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The Langer-Bar-Miller (LBM) theory and the non-linear Cahn theory on phase separation 
dynamics in alloys have been reviewed briefly and applied to calculate dynamics of phase 
separation of homogenized CuCo alloys. The three-parameter technique of the LBM theory 
for evaluating compositional fluctuations is applicable only in a narrow range of alloy 
composition. In this narrow range, the as-calculated equal time structure function S(k,t), 
where k is the wave vector and t is time, does not follow the universal scaling hypothesis in 
the late stage of phase separation: k~ S(k,t) = f(k/km), where f is a scaling function and km is 
the peak position of S(k,t). The kinetic growth exponent, defined by km as a power function 
of time, does not agree with prediction of the scaling analysis. The non-linear Cahn approach 
has been applied to evaluate the profile and amplitude spectra of the compositional 
fluctuations during phase separation in both meta-stable and non-stable regions. Overall 
range of alloy composition, the structure function S(k,t) in the late stage of phase separation 
shows scaling behaviours quite well consistent with the universal scaling hypothesis. The 
kinetic growth exponent equals to 0.22 in the non-stable region, well consistent with 
prediction of the scaling analysis. In the meta-stable region, this exponent increases up to 
0.28 as the alloy composition decreases down to 0.01, exhibiting good agreement with 
theory of coarsening kinetics. 

1. Introduction 
The problem of phase separation in homogenized 
alloys has been of interest in last decades, not only 
from the point of view of technological application but 
also as a representative example of the first order 
phase transitions [1-3]. Since Cahn [4-6] published 
the first linearized dynamic theory on this problem, 
many studies on improving this theory from different 
points of view and applying it to explain a series of 
experimental phenomena observed in processing of 
different materials (metals, glasses, polymers and bio- 
logical materials etc.) have been reported. Our under- 
standing of phase separation dynamics has been 
considerably advanced. For progress in this field, we 
refer to the excellent reviewing articles of Binder 
[2, 7], and Wagner and Kampmann [8]. It is now well 
believed that the linearized Cahn theory is only suc- 
cessful in the very early stage of spinodal decomposi- 
tion, one of the two mechanisms responsible for phase 
separation in alloys. Afterwards, the non-linear effect 
becomes critical [7]. For precipitation of alloys in the 
metastable region, the classical nucleation model 
which actually results from the reaction kinetic con- 
cept and has gradually been improved seems to be 
satisfactory [8]. However, besides the cluster expan- 
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sion approach of Binder et  al. [9, 10], which success- 
fully describes dynamic behaviours of phase separ- 
ation in both metastable and non-stable regions, 
a phenomenological dynamic aproach applicable in 
both regions is still open to us. 

Almost twenty years ago, Langer er aI, [11-14] 
proposed the well known Langer-Bar-Miller (LBM) 
theory of spinodal decomposition, which reveals the 
dynamic characters but also predicts the universal 
scaling property of phase separation in alloys exhibi- 
ting a Landau-type character of thermodynamics. 
This theory may still represent one of the best models 
on phase separation dynamics. The wide generality of 
the proposed equation for dynamic evolution and the 
performed scaling analysis in this theory has been 
recognized. However, this theory has rarely been ap- 
plied to real alloy systems. The main difficulty is 
involved in an evaluation of the time-dependent 
compositional fluctuations which exhibit strong non- 
linear characters. Langer et al. [14] pre-assumed 
a single-point correlation of compositional fluctu= 
ations which follows the Gaussian distribution and 
developed a three-parameter technique to numerically 
evaluate the compositional fluctuations. What should 
be pointed out here is that this technique shows 
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a lower stability of numerical iteration if the free 
energy of the system as a function of alloy composi- 
tion is required to be expanded to a higher order. For 
a model system exhibiting a Landau-type form of 
thermodynamics (AG = ad) z - b~ 4, where a and b are 
positive constal~ts, AG and ~ are the free energy and 
order parameter of the system, respectively), a check- 
ing of validity of this technique by Comparison with 
the Monte-Carlo simulations was performed [143 . 

Recently, Miyazaki et al. [15-17] developed a 
Fourier-transforming scheme of the non-linear Cahn 
diffusion equation and updated the Cahn theory into 
a non-linear approach. This makes it possible to 
directly calculate compositional fluctuations during 
phase separation without imposing any pre-assump- 
tion. Previous studies on one-dimensional calcu- 
lations showed that the dynamic behaviours of phase 
separation in the non-stable region and around the 
spinodat boundary are quite welt described by the 
non-linear Cahn approach [18-20]. As the metastable 
region is entered, a reasonable approach requires in- 
volving thermal noises and then the dynmrdc charac- 
ters can no longer be identified [21, 22]. A systematic 
calculation of phase separation dynamics in at least 
a two-dimensional case is necessary to understand 
these characters. In addition, a surprising similarity of 
the non:linear Cahn approach with the LBM theory is 
revealed by performing a comparison between them. 

CuCo system is an excellent model alloy for study of 
phase separation as its thermodynamics is well estab- 
lished and its phase diagram exhibits a broad miscibil- 
ity gap and no intermediate phase exists. The two 
products of phase separation are both f.c.c.-type, char- 
acterized by coherency and small lattice mismatch. 
The giant magnetoresistance (GMR) recently ob- 
served in decomposed CuCo alloys [23, 24] has also 
stimulated intense investigations of phase separation 
kinetics of this system because the GMR depends 
strongly on the microstructure. 

In this paper, we will apply the LBM theory and the 
non-linear Cahn theory to calculate phase separation 
dynamics of CuCo alloys and perform a checking of 
their validity. Firstly, we will briefly review both 
theories and present the thermodynamic description 
of CuCo alloys. Then, the calculated results based o n  

the two models will be given. We will show that the 
three-parameter technique of the LBM theory is ap- 
plicable only in a narrow range of alloy composition. 
As the non-linear Cahn theory has been used to evalu- 
ate the compositional fluctuations, the as-calculated 
structure function and kinetic growth exponent have 
been approved by a detailed comparison with the 
scaling hypothesis and coarsening theory. 

2. Theoretical background 
2.1. Mot ion equat ion for  structure funct ion 
A derivation of this equation can be found in Langer's 
papers [11, 14]. Here, we will only give a concise 
description in order to fix notation. By the master 
equation approach, Langer et al. gave following equa- 
tion of motion for the structure function S(k, t) which 
is defined as the Fourier transform of the two-point 
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correlation function of composition fluctuations in space 

8S(k,t) = _ 2 M k 2 [ K k 2  + A(u)]S(k,t) + 2 M R T k  2 
8t 

(1) 
where M is the atomic mobility, K is the coefficient of 
gradient energy, R is the general gaseous constant, T 
is temperature, u = u(r, t ) =  C(r, t) - Co, C(r, t) is the 
alloy composition at position r and time t and Co is its 
average value. The symbol A(u) in Equation 1 repres- 
ents a non-linear feedback term from compositional 
fluctuations which exhibit strong time dependence. 
The right second term of E~quation 1 involves a contri- 
bution of thermal noises and should be much weaker 
than the right first term. Denoting by AG the Gibbs 
free energy of the system, we have [14] 

1 
A(u) 

vc (2) s + 1)! § <u2> 

where (u i) represents the average of the self-correla- 
tion u ~ over the real space as considered, which can be 
directly derived from the compositional profile if it is 
available. Comparing Equation 1 with the linearized 
Cahn theory [6], only has an additional term A(u) 
been included. However, evaluation of this term 
seemed to be so difficult in mathematics that only 
recently has a precise solution of it become available, 
i.e. the non-linear Cahn theory to be described below. 
Besides this, the three-parameter technique of the 
LBM theory also represents a well known approxi- 
mation of it. 

2.2. Langer -Bar -Mi l le r  theory 
In the LBM theory, the compositional fluctuations 
were assumed to exhibit a Gaussian type single point 
distribution. The correlation function p(u) is eap- 
proached as: 

b2 [ (u - bl) 2] 

b, [ (u + b2) 2] 
+ -v, 2 / ~ ( b i  + b2) exp _ ~ - j  j (3) 

where bl, b2 and ~ are three parameters which define 
uniquely the character of the distribution. Here it is 
required that b~ > 0, b2 > 0 and ~ > 0. 

Due to limited space here, we directly write the 
equations of motion for the self-correlation (u i) [14] 

d(u2> 
= 2Mr - W + RT(A/aS)] (4a) 

dt 

d(US>dt [ W ~ )  ..-~ 1 8 " ( A G ) ( n  1)! 8C~ = - 3M + A ~  - 

x ( ( u  "+ ' )  - (u2)(u"-') (u3>(u")~] (4b) 
)j 

dt (u2) A = ( n -  1)! 8C; 

( �9 _ 

(4c) 



where a is the coarse-graining length which normally 
takes a few atomic spacings for those systems of 
short range interaction, such as metallic CuCo alloys 

to be considered here, kma x = ~ / a  3, A = 2 0.6kmax, 
W = • + A(u)]S(k,  t)dk and (U4)c - 2 g  2 

(114) - -  3(/22) 2. 

As in Equation 3 p(u) is assumed to be a sum of 
displaced Gaussians, any term (u i) can be expressed 
as a function of the three parameters b~, b2 and c~, for 
instance 

( / 2 2 >  = (y2 _]_ bib2 

@3) = babe(b1 - b2) 

(u4)~ = blb2[(bl - b2) z - 2blb2] 

(uS> = bib2(b i - b2)[10(y 2 4- b 2 + b 2] 

(/26) = 15cy6 + 45cyr 

+ 15cy2b~bz(b 2 - b,b2 + b~) + b~be 

x(b~ - b{b2 + bib ] - b~b32 + b~) (5) 

This is the well known three-parameter technique of 
the LBM theory. A finite-difference scheme of evaluat- 
ing (u i) is: at t = 0, bl, b2 and cr are imposed suitable 
values and S(k, 0)=  0; at time t, term (u  i) is cal- 
culated by Equation 5 and A(u) is obtained from 
Equation 2, then S(k, t + At) are calculated by Equa- 
tion 1 through 

At 8S(k, t) 
S(k, t + At) = S(k, t) + 8t (6) 

Finally, term (u ~) at time t + At are obtained from 
Equation 4 and new values of the three parameters are 
determined by solving Equation 5. This procedure is 
repeated and S(k, t) as a function of time can be 
numerically evaluated. 

Note that from Equation 5 we can find a cubic 
equation for term (bib2) 

(bib2)3 + �89 _ {(/23)2 = 0 (7) 

it is obvious that a positive root of this equation 
always exists. However, as (b~b2) > (u2) ,  r~ 2 must be 
negative, which has no physical meaning. We will 
show in following sections that for CuCo system, this 
three-parameter technique may only be used in a very 
narrow range of alloy composition, beyond which the 
case of (bib2) > (u 2) occurs. 

2.3. Non-linear Cahn theory 
The term (u i) can be evaluated by the non-linear 
Cahn theory, and so a direct calculation of the struc- 
ture function S(k, t) becomes possible. This theory is 
based on an analytical solution of the following Cahn 
equation 

~u 
-- V(D(u)Vu) -- 2MKV4u  (8) & 

where D(u) is the inter-diffusion coefficient which is 
dependent of compositional fluctuations. In the 
Fourier transform scheme of Equation 8, D(C) is for- 

mulated as [15-17] 

D(C) = ~ D,u" = M 82(AG) 
,=o 8C 

1 d"+2(AG) u" (9a) 

n = 0  

Considering phase separation in two-dimensional 
space, by Fourier transforming, we have 

u = ~ Q(m, n, t)exp[if~(mx + ny)] (9b) 
m,n 

where 13 is the reciprocal of length of the region con- 
sidered here, m and n are the wave numbers of Fourier 
fluctuations and x and y are the co-ordinates in 
the real space. Substituting Equations 9a and 9b into 
the two-dimensional Cahn equation, we obtain the 
motion equation for the amplitude Q(m, n, t) of the 
Fourier waves: 

~Q(m, n, t) I 
8t - [32(m2 + n2) 2MK~2(m2 + n2) 

L 

M 8i+2(AG) 
xQ(m,n,t) + (i + 1)! 8C~ +2 

i=0 

Rj(m, n, t)/  (10) • 

1 ... or) is the j th order two-point 
compositional fluctuations in Fourier 

where Rj ( j  = 
correlation of 
space: 

Ro(m, n, t) = Q(m, n, t) ( l la)  

R l ( m , n , t )  = ~ ~ Q ( k l , k 2 ,  t) Q(m - k l , n  - k2, t) 
- o o  - o D  

(1 lb) 

R, l(kl,k2,0 
- oo  - oo  

X Q(m -- k l ,  n -- k2, t), j ~> 2 (11c) 

The numerical scheme for evaluating the composi- 
tional fluctuations is very simple: for a suitable choice 
of the initial parameters: [3 and [m, n], Q(m, n, 0) is 
generated by a standard stochastic technique within 
a range with its upper and lower boundaries being 
determined by the fluctuation-dissipative theorem 

I Q(m, n, O)I/At <~ 2 M R T  2 2 2 [3 (mmax + nmax), 

here At = 1.0s (12) 

with m: [ -  m . . . .  mmax] and n: [ -  n . . . .  nmax]; then 
for available Q(m, n, t), Q(m, n, t + At) is obtained 
from Equations 10 and 11 by a finite difference scheme 

~(2(m, n, t) 
Q(rn, n , t  + At) = O(m,n, t)  + 8t At (13) 

For the case of CuCo alloys, that mma x = nma x = 128 
and [3 = 50 btm-1 is chosen. 

2.4. Scaling hypothesis and kinetic 
growth exponent 

It is well known that there are two different mecha- 
nisms responsible for phase separation, i.e. spinodal 
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decomposition in the non-stable region and nuclea- 
tion and growth in the metastable. However, it is now 
recognized that these mechanisms can be identified 
only in the early stage of phase separation, whereas 
towards the late stage coarsening becomes dominant. 
No matter what the mechanism initiating the phase 
separation, the late stage of phase separation always 
follows the well-known dynamic scaling hypothesis 
[25-27] as follows 

s(k, t) = km f(k/km) (13) 

wheref(x) is a scaling function which is time indepen- 
dent. Another common character of phase separation 
is coarsening behaviour in the late stage [28-30], 
which is characterized by motion of the peak position 
of S(k, t), k,,. This kinetics is found to satisfy a power 
law as plotted against time t 

km o c t - "  (14) 

where n is the kinetic growth exponent. Different 
values of n were proposed by different theories appli- 
cable for different situations. In the non-stable region, 
Binder proposed n = 1/4 [28], and the scaling analysis 
of Langer et aL [14] gave n = 0.212. For the case 
of domain growth, n = 1/3 from the LSW theory 
[31, 32] which is essentially a mean-field theory valid 
in the case of very low volume fraction X of the new 
phase (which should fall into the metastable region). 
Therefore, we can at least conclude that n in the 
non-stable region should be smaller than that in the 
metastable region where Z is lower. Equations 13 and 
t4 will be the critical measures of the validity of the 
two theories described above. Especially, a general 
dynamic approach applicable in both non-stable and 
metastable regions should be able to predict a reason- 
able value for the kinetic growth exponent as applied 
to different regions. 

2.5. Free energy and diffusion data of 
CuCo alloys 

We have briefly reviewed the LBM theory and the 
non-linear Cahn theory. An application of both 
theories requires data of the diffusion coefficient and 
the Gibbs free energy of the alloy as a function of alloy 
composition and temperature. For CuCo alloys, these 
data are already available from measurements and 
calculations. Between 673-873 K, AG can be written 
as [33, 34] 

a 6 ( C o )  = (1 - Co)Ggu + CoGgo - T S  mix q- A G  ex 

(15) 

with 

S m i x  ~--- - -  R[(1 - Co)ln(1 - Co)+ Coin(Co)] 

(16a) 

AG ex = A1Co(1 - Co) + A2Co(1 - Co)(1 - 2Co) 

+ A3Co(1 -- Co)(1 -- 2Co) 2 

+ TB1Co(1 -- Co) (16b) 
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where G~ and Gc~ are the free energies of the two pure 
components, S mix is the ideal entropy of mixing, AG *x 
is the excess free energy, T is temperature (K), R is the 
general gas constant (8.31 J tool-l),  A1, A2, A3 and 
B1 are the coefficients of the free energy function 
(for an f.c.c, solid solution, A1 = 37 100, A2 = 2829, 
A3 = 3251 and B1 = -  5.194; the unit of AG ex is 
J mol-t) .  Although the Curie point of Co is 1396 K, 
much higher than the temperature of interest here, the 
magnetic contribution of cobalt to the free energy 
should be included, but this contribution can be omit- 
ted as a good approximation since in the present case 
Co < 0.1. The elastic energy contribution can also be 
neglected because the contribution of this term is 
estimated to be less than 5%. 

The diffusion data of Co in Cu has been obtained by 
impurity diffusion method, from which the temper- 
ature dependent mobility of atoms in CuCo alloys was 
evaluated [19, 35] 

M = 0.000172 exp(24829.3/T)/RT (unit: cm 2 s-l). 

(17) 

A reasonable estimation of the coarse-graining 
length a for CuCo system is a few times the lattice 
spacing ro. Here, we take a = 3ro where ro = 0.368 nm 
[34]. The gradient energy coefficient K can be written 
as K = AHo a2/2, where AHo --- 12 kJ mol-  1 [34] is 
the maximum mixing enthalpy. 

3. Numerical results 
All of the calculation has been focused on the phase 
separation of homogenized CuCo alloys annealed at 
T --- 773 K. We will present the calculated results from 
the LBM model and the non-linear Cahn approach, 
respectively. 

As Co -- 0.5 and 0.35, the calculated structure func- 
tion S(k, t) for different times is shown in Fig. l(a) and 
Fig. 2(a), where the time scales are inserted inside. 
A plotting of the single point distribution p(u) for 
several times is presented in Fig. l(h) and Fig. 2(b), 
respectively. As Co = 0.5, S(k, t) shows a rapidly left- 
wardly shifting peak km in the early stage of phase 
separation and is then remarkably decelerated, ac- 
companying an accelerating increase of S(k, ,  t) in the 
late stage, which is physically unreasonable and indi- 
cates a worse convergence of the numerical iteration. 
Two peaks of p(u) can be clearly identified at  t = 50 s, 
afterwards they exhibit a further growth. In the late 
stage an abnormal leftwardly shifting of both peaks is 
found, which is, unfortunately, due to instability of 
numerical iteration. For the case of Co = 0.35, con- 
siderable motion for the peak of S(k, t) even in the late 
stage is achieved and the distribution function 9(u) 
exhibits two-peak pattern after 70 s. The stability of 
numerical iteration at C o = 0.35 is considerably im- 
proved comparing to the case of Co = 0.5, due to the 
fact that a locally symmetrical shape of AG(Co) 
around this value is shown. For both cases, no cross- 
over phenomenon as identified by Langer et al. can be 
observed, the other features remaining similar to those 
as revealed. 
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F i g u r e  1 The calculated structure function S(k, t) (a) and single 
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Figure 2 The calculated structure function S(k, t) (a) and single 
point distribution p(u)  (b) from the LBM theory for CuCo alloy of 
Co = 0 .35  annealed at T = 773  K for different times. See Fig .  1 cap- 
tion for key. 

Note here that AG as a function of alloy composi- 
tion at a fixed temperature shows a maximum at 
Co = 0.35 but not 0.5. A faster kinetics of phase separ- 
ation at Co = 0.35 than that at Co = 0.5 is demon- 
strated from the distribution function p(u) as shown in 
Figs l(b) and 2(b), however, the structure function at 
Co = 0.35 shows a slower growth compared with the 
case of Co = 0.5 because of a worse convergence of the 
numerical iteration in the latter case. Unfortunately, 
as Co ~< 0.32 and Co >1 0.55, non-negative values of 
the three parameters bt, b2 and cy can no longer be 
achieved after ten seconds, apart from the initial state 
regardless of effort of improving the numerical stabil- 
ity, indicating that the three-parameter technique 
becomes no longer valid. The calculated structure 
function from the LBM theory is in doubt then, except 
in the very narrow range of alloy composition around 
0.35. As a further checking, rescaling of S(k, t) by 
k3m S(k, t) and k by k/]s m from Figs l(a) and 2(a), follow- 
ing the scaling hypothesis, is made and the output is 
shown in Fig. 3. For both cases, only after 50 s, has the 
scaling hypothesis been well followed, but the points 
again deviate away from the scaling curve in the late 
stages (after 200 s) where the scaling hypothesis should 
be satisfied in a better way. This indicates that at least 
in the late stage of phase separation (where coarsening 
dynamics is dominant), the three-parameter technique 
of LBM theory becomes invalid. In addition, the 
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Figure 4 A plot of km/= against time t for CuCo alloys phase 
separating at T = 773 K, as calculated by the LBM theory, for 
evaluating the kinetic growth exponent n. [] Co = 0.50, n = 0.178; 
0 Co = 0.35, n = 0.705. 

kinetics growth exponent n obtained by plotting k m 

against time t as shown in Fig. 4 is 0.18 as Co = 0.5 
and 0.71 as Co = 0.35, showing big differences from 
0.21, the exponent predicted by the scMing analysis. 
We conclude that the three-parameter technique in 
the LBM theory for calculating compositional fluctu- 
ations may be applicable only in a very narrow range 
of composition regardless of its validity, at least for 
CuCo system. 

Therefore, we have to search for a new technique of 
evaluating compositional fluctuations during phase 
separation. An updated approach is the non-linear 
Cahn theory as described above. A systematical evalu- 
ation of compositional profile and amplitude spectra 
of the Fourier waves has been made, as presented 
below. 

The two dimensional composition profiles for sev- 
eral times of annealing as Co = 0.5 and 0.05 are pre- 
sented in Figs 5 and 6, respectively. As Co = 0.5, weak 
modulating of the wavenumbers in the early stage can 
be observed. With time, the profile develops from an 
initially stochastic pattern (Fig. 5 (a)) into a regular one 
of pseudo-periodicity along both axes (Fig. 5(b)). As 
shown in Fig. 5(c) and (d), inter-connected structure 
has formed in the late stage. In addition, we can 
identify that some peaks of the profile grow at a higher 
rate than other ones, whereas the other peaks remain 
unchanged or even decayed with time. Advancing of 
those peaks of higher growth rate, balanced by 
decaying of those peaks which fall behind, contributes 
to the so-called "coarsening process". As Co = 0.05, 
strong modulating of w/tvenumbers takes place in the 
very early stage (Fig. 6(a) and (b)), followed by a rapid 
developing of the Co-rich regions (Fig. 6(c) and (d)). 
These regions exhibit a very sharp interface with the 
matrix. Note here that at Co = 0.05 and T = 773 K 
the system is already inside the metastable region. 
From the point of view of classic nucleation concept, it 
may be allowed to say that some nuclei have already 
formed in the matrix at t = 2 0 0 s .  As t=400s ,  
equilibrium composition has been achieved in most 
Co-rich regions, indicating that the kinetics of nuclea- 
tion and growth is very rapid. Afterwards, consider- 
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Figure 5 The compositional profiles at several times for CuCo alloy 
of Co = 0.50 phase separating at T = 773 K, as calculated by 
the non-linear Cahn theory. (a) t = 0; (b) t = 50 s; (c) t = 200 s; 
(d) t = 300 s. 

able coarsening of the microstructure is demonstrated 
by a comparison of Fig. 6(e) with Fig. 6(f), where some 
Co-rich particles are widened and the other Co-rich 
phases disappear. From these results it seems to be 
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allowed for such an argument that the non-linear 
Cahn theory can also give a reasonable description of 
phase separation in the metastable region, besides its 
successful modelling of spinodal phenomenon in the 
non-stable region. 

It should be useful to give an insight of evolution of 
the amplitude spectrum of the Fourier waves, in order 
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Figure 6 The compositional profiles at several times for CuCo alloy 
of Co = 0.05 phase separating at T = 773 K, as calculated by the 
non-linear Cahn theory. Note here the system is inside the meta- 
stable region, but the as-shown profile grows with time, indicating 
that phase separation (nucleation in the early stage) is taking place. 
(a) t=0; (b) t=50s; (c) t=100s; (d) t=200s; (e) t=400s; 
(f) t = 1000 s. 

to understand the mechanism for modulating com- 
positional profile. As a representative example, in Fig. 
7 the spectra of several times for the case of Co = 0.05 
are given. Starting from the initial state, the Fourier 
waves of negative numbers (m < 0 and n < 0) rapidly 
decay and those waves of positive numbers grow grad- 
ually, whereas the other waves in co-ordinate spaces of 
(m > 0, n < 0) and (m < 0, n > 0) remain roughly un- 
changed (Fig. 7(a) and (b)). Apart from the early stage, 
there are two local sections in the wavenumber space 
(m > 0, n > 0) in which the amplitudes of some 
wavenumbers show faster growth compared to other 
spaces (Fig. 7(c-f)). Obviously, one of the sections 
(with smaller values of m and n) contributes to 
wavelength modulating of the compositional profile 
and late stage coarsening of the microstructure, the 
other (with larger values of m and n) configures the 
shape of the profile, resulting in sharper and sharper 
interface of Co-rich phases with the matrix (see 
Fig. 6(e) and (f)). From these spectra, the non-linear 
characters of phase separation, even forward to the 
late stage where phase separation proceeds via coarse- 
ning of the microstructure, can be clearly revealed. 

4. Structure function and dynamic 
scaling 

The above results demonstrate that the non-linear 
Cahn theory describes in a better way the dynamic 
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characters of phase separation of CuCo alloys. More 
importantly, this theory presents a numerical tech- 
nique from which the compositional fluctuations can 
be directly calculated without imposing any assump- 
tion. A convincing approvement of this theory should 
be after a favourable checking of the universal scaling 
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behaviour in the late stage and the kinetic growth 
exponent as calculated from this theory. Unfortu- 
nately, in this theory an analytical expression of the 
structure function is not given. In fact, a surprising 
similarity of Equation 1 with Equation 10 can be 
found if Equation 1 is rewritten as 

- E 
aS(k,  t) k 2 2MKk2S(k, t) + 

at ,=o(n + 1)! 

a"+ ~(AG) 2<u"+2)s(k, t)] (is) 

If only the contribution of a single Fourier wave of 
wavenumber (m, n) to the compositional fluctuation in 
real space is considered, a comparison of Equation 10 
with Equation 17 directly yields 

2 ( U  i + 2 )  Ri(m, n, t) 
@2) Ro(m;n,t)' 

/> 0 (19) 

here Ri (m, n, t) (i r 0) actually represents the two- 
point correlation function of compositional fluctu- 
ations in Fourier space, which has one-to-one corres- 
pondence to the fluctuations in real space. Therefore, 
Equation 19 seems to be qualitatively true. As term 
u in Equation 19 is a summation of Fourier waves 
of wavenumbers occupying over the Fourier space, 
a reasonable approach of Equation 19 is performed by 
replacing Rdm, n, t) by the average of the two-point 
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correlation functions over all the Fourier space 

Z Ri(m, n, r) Q(m - kl ,  n - k2, t) 
R~(m, n, t) k,,k~ 

Ro(m, n, t) 2 Q(m, n, t) Q(m - kl ,  n - k2, t) 
k~,k2 

Z R,+~(m, n, t) 
"'" (20) 

Z Rl(m, n, t) 
rn, n 

Unfortunately, here we ,could not provide a math- 
ematically strict derivation of Equation 20, where the 
sign of equality has been replaced by an arrow. 

As a good approximation, Equations 1 and 2 can 
then be rewritten as 

~S(k, t) 
~t 

2Mk2[(Kk  2 + A(u)]S(k,t) + 2 M R T k  2 

(21) 

A(u) = (n + 1)! 
n = O  

~,+ 2(AG ) m~,n R,+ l(rn, n, t) 

~C~ +2 ~ Rl(m, n, t) 
m,n  

(22) 

No visible difference between Equations 2 and 22 
was revealed by a previous calculation, which demon- 
strates that Equation 20 is indeed a reasonable formu- 
lation. However, from a consideration of reliability, 
we have still applied the following procedure: S(k, O) 
for all k is imposed zero and Q(m, n, 0) is generated by 
the standard stochastic method as described above. 
Here, At < a2/D is chosen, where D is the diffusion 
coefficient of Co in pure copper. Starting from S(k, t) 
and Q(m, n, t), u(x, y, t) is calculated from Equation 
9 and then (u *) is obtained by taking the average of 
twenty compositional profiles over a real space of 
32 x 32 nm 2. These profiles are evaluated by imposing 
different random seeds for creating Q(m, n, 0). From 
Equation 2 A(u) is calculated and ~S(k, t)/~t and 
then S(k , t  + At) are obtained from Equation 1 
and S(k, t + At) = S(k, t) + At~S(k, t)/~t. ~Q(m, n, t)/~t 
and then Q(m, n, t + At) are calculated from Equa- 
tions 10 and 12. Finally, u(x, y, t + At) was recom- 
puted and thus completing the iteration cycle. 

By applying this improved technique of numerical 
iteration, dynamics of phase separation of CuCo 
alloys over all the range of composition (Co = 0.50, 
0.30, 0.10, 0.07, 0.05, 0.01) has been calculated. The 
results are presented in Figs 8 to 10. Fig. 8 gives the 
calculated S(k, t) for different times, where the time 
scales are inserted in the figures, respectively. For  all 
cases, gradual growth and peak shifting leftwardly of 
S(k, t) are achieved. The lower the composition is, the 
slower the growth is and the more considerably the 
peak shifts. A roughly constant decelerating growth of 
S(km, t) until a stage where S(k, t) tends to be saturated 
with time can be identified for each of the cases. As 
an example, at Co = 0.05, the average wavelength 
of about 3.0 nm for the profile at t = 1000 s, as shown 
in Fig. 6(f), agrees very well with an estimation 
from Fig. 8(e) where k m = 2.2nm -~ at t = 1000 s. 
After t > 5000 s, leftwardly shifting and increasing of 
S(km, t) is not so easy to be distinguished, indicating 
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coarsening of the microstructure is very slow. For  all 
cases, no cross-over phenomenon of S(k, t) from differ- 
ent times is observed. 

A plotting of ln(km) against ln(t) for all the cases 
demonstrates that the linear law is very well followed, 
as shown in Fig. 9. The kinetic growth exponent n, i.e. 
absolute value of the slope of ln(km) against ln(t), as 
a function of alloy composition, is also inserted in the 
figure. In the non-stable region which has a boundary 
with the metastable one at Co ~ 0.08, n = 0.22 ~ 0.23, 
exhibiting a very weak dependence of Co due to the 
fact that in this composition range the microstructure 
consists of inter-connected new phases embedded in 
the matrix. This value agrees quite well with that (0.25) 
predicted by Binder et al. [28] and the scaling expo- 
nent (0.212) obtained by Langer et al. [14]. Very 
interestingly, as Co decreases further and thus the 
system enters the metastable region, n increases rap- 
idly until n = 0.28 as Co = 0.01 where the LSW the- 
ory, we argue, should be roughly valid. This value 
indeed deviates not so far from the predicted 0.33 by 
the LSW theory. In fact, many experiments and simu- 
lations on coarsening kinetics in those systems of 
short range interaction (such as metallic systems) have 
demonstrated that n always falls between 1/3 and 1/4. 

Finally, we come to check the dynamic scaling of 
the calculated structure function. A rescaling of S(k, t) 
by k3m x S(k, t) and k by k/km for all the cases is shown 
in Fig. 10(a) to (f), respectively. Without exception, the 
scaling hypothesis is very well satisfied in the late stage 
of phase separation for all the cases. Due to the kinetic 
reason, as Co = 0.5, S(k, t) falls in the scaling curve at 
t > 100s, whereas the scaling state has not been 
reached until t = 1000 s as Co = 0.01. However, a fur- 
ther checking of Fig. 10 reveals that the early stage of 
phase separation in the metastable region exhibits 
a much more remarkable positive deviation from the 
scaling function compared to the cases of Co = 0.5 
and 0.3. This positive deviation should be attributed 
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to the fact that nucleation is a rapid event and the 
nucleus reaches its equilibrium composition in a short 
time which results in a rapid growth of S(km, t). Con- 
trarily, the spinodal decomposition is characterized by 
a gradual growth of the compositional fluctuations. 
Therefore, it is reasonable that a large positive devi- 
ation from the scaling function is achieved for phase 
separation proceeded via nucleation mechanism. 
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5. Conclusions 
In conclusion, we have studied the dynamics of phase 
separation of CuCo alloys at T = 773 K by applying 
the LBM theory and the non-linear Cahn theory. The 
three-parameter technique of the LBM theory for 
evaluating compositional fluctuations during phase 
separation has been proved to be applicable only in 
a very narrow range of alloy composition around 
Co = 0.35, and the as-calculated structure function 
S(k, t) in the late stage of phase separation and the 
kinetic growth exponent do not agree with the uni- 
versal dynamic scaling hypothesis and the theory of 
coarsening kinetics, respectively. 

The compositional profile and its amplitude spec- 
trum in the Fourier space of CuCo alloys phase-separ- 
ating in both non-stable and metastable regions have 
been calculated by applying the non-linear Cahn 
theory. By coupling the Cahn theory into the motion 
equation for structure function, an improved tech- 
nique of numerical calculation of the structure func- 
tion has been proposed. Over all the range of alloy 
composition, the structure function S(k:, t) in the late 
stage of phase separation shows dynamic scaling be- 
haviours quite well consistent with the universal scal- 
ing hypothesis. The kinetic growth exponent obtained 
for the non-stable region, is quite well consistent with 
prediction of the scaling analysis, whereas phase sep- 
aration in the metastable region exhibits a composi- 
tion dependent exponent of kinetic growth, which 
shows good agreement with theories of coarsening 
kinetics. 
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